

Economic and Impact Analysis of Conservation Agriculture Practices

Mike Bertelsen, George Norton, and Abigail Nguema

The SANREM CRSP is made possible by the United States Agency for International Development and the generous support of the American people through Cooperative Agreement No. EPP-A-00-04-00013-00

Outline of presentation

- Overview of CAPS economic issues
- Initial approach for economic and environmental impact analyses

Purpose of economic and impact analyses of conservation agriculture practices on SANREM

- Identify field- and farm-level production systems and sequencing of CAPS elements to maximize net benefits to smallholders, minimize risks, and maximize adoption.
- Assess broader economic and environmental impacts of CAPS

Potential CAPS <u>Short-Term</u> Benefits and Costs

Benefits	Costs	
Time: land preparation (gender implications)	Time: weeding (gender implications)	
Reduced drought risk (yields/food security)	k Herbicides / Soil amendments	
Erosion control	Specialized equipment	
	Livestock control	
	Risk/uncertainly involving new, complex, integrated management system	

Office of International Research, Education, and Development, Virginia Tech

SANREM CRSP

Potential CAPS <u>Longer-Term</u> Benefits and Costs (continued)

Benefits	Costs	
Time: land preparation (gender implications)	Specialized equipment	
Reduced drought risk (yields/food security)	New pests	
Erosion control		
Time: Reduced weeding (gender implications)		
Increased productivity (yields/income/food security)		

Office of International Research, Education, and Development, Virginia Tech

SANREM CRSP

Potential CAPS <u>Longer-Term</u> Benefits and Costs (continued)

	Benefits	Costs
A A	Ecosystem Services	
	 Carbon sequestration 	
	 Reduced stream siltation/pollution 	
	 Recharged aquifers 	
	 Increased biodiversity 	
in is	Others	
		SANREM C

Economic Questions Include:

- What are the costs and benefits of CAPS in cropping systems/practices and related animal and forestry sub-systems?
- What are the "optimal" systems and is there an optimal sequencing of CAPS elements?
- What are the broader economic and environmental impacts of wide-scale CAPS adoption?
- What policy or other changes are required to bring about CAPS changes?

Approach

- Work with regional programs to identify farming systems and CAPS elements to be assessed
- Design farm-level optimization model for these systems.
- Collect data for model by region
- Validate model

Linear programming

- Model will maximize (a) net economic benefits to small holders and (b) environmental benefits of the farming systems (using multi-period models)
- Will explore implications of varying weights on the two goals and of changing policies
- Aggregation to market level will involve simple multiplication by number of farms and hectares affected (will ignore price effects)

Data needs from LTRAs

 Biophysical and socioeconomic characterization of main production systems in targeted regions (cropping, livestock, forestry subsystems)

Data needs (continued)

- For each CAPS field trial or intervention:
 - Changes in yields
 - Changes in input use (purchased or provided including family and other labor)
 - Changes in biophysical factors such as erosion, soil & water quality

Data needs (continued)

- Data should be collected periodically on:
 - Changes in quantities marketed/consumed by collaborating households
 - Changes in market conditions/ prices
 - Changes in land use conditions
 - Changes in incomes of target group

Sequencing of regions

- All regions should begin collecting data as part of normal research process
- Region(s) modeled first will depend on LTR progress
- Tentatively, will begin with Latin America and West Africa

- As project progresses will assess adoption of CAPs and aggregate benefits
- In addition to economic assessment, we will explore benefits associated with ecosystem services
 - In the LP model
 - Placing monetary value on the services

Conclusion

- Impact assessment theme will work closely with LTRAs to help assess optimal farming systems and economic and environmental impacts of CAPS
- We appreciate the collaboration

Creating improved livelihoods ...

... through knowledge-based sustainable agriculture and natural resource management research